5 research outputs found

    Battery Sizing for Mild P2 HEVs Considering the Battery Pack Thermal Limitations

    Get PDF
    Small capacity and passively cooled battery packs are widely used in mild hybrid electric vehicles (MHEV). In this regard, continuous usage of electric traction could cause thermal runaway of the battery, reducing its life and increasing the risk of fire incidence. Hence, thermal limitations on the battery could be implemented in a supervisory controller to avoid such risks. A vast literature on the topic shows that the problem of battery thermal runaway is solved by applying active cooling or by implementing penalty factors on electric energy utilization for large capacity battery packs. However, they do not address the problem in the case of passive cooled, small capacity battery packs. In this paper, an experimentally validated electro-thermal model of the battery pack is integrated with the hybrid electric vehicle simulator. A supervisory controller using the equivalent consumption minimization strategy with, and without, consideration of thermal limitations are discussed. The results of a simulation of an MHEV with a 0.9 kWh battery pack showed that the thermal limitations of the battery pack caused a 2–3% fuel consumption increase compared to the case without such limitations; however, the limitations led to battery temperatures as high as 180 ◦C. The same simulation showed that the adoption of a 1.8 kWh battery pack led to a fuel consumption reduction of 8–13% without thermal implications

    Development of Optimization Based Control Strategy for P2 Hybrid Electric Vehicle including Transient Characteristics of Engine

    Get PDF
    Models based on steady-state maps estimate fuel consumption to be 2–8% lower than real experimental measured values. This is due to the fact that during transient phases, the engine consumes more fuel than in steady phases. Some literature has addressed the conventional vehicle engine model that improves fuel consumption estimation’s accuracy during the transient state. However, the characteristics of the engine in the scope of hybrid electric vehicles (HEVs) with an integrated control strategy is yet to be covered. The controller is designed to minimize engine operation in the transient phase to enhance energy savings. In this paper, the correlation between fuel enrichment in transient and steady-state fuel estimation is established as transient correction factor (TCF). Its explanatory variable was the engine torque change rate. This paper describes the influence of engine transient characteristics on the fuel consumption of a mild HEV. The work attempts to improve the fuel economy of the HEV by introducing a penalty factor in the controller to optimize the use of the engine in transient regimes. A backward vehicle model was developed for a production vehicle with a conventional powertrain and validated experimentally using data available online. The corresponding hybrid vehicle model was developed by integrating the electric motor and battery components with the conventional vehicle model. A P2 off-axis configuration was chosen to this end as the HEV architecture. A conventional equivalent consumption minimization strategy (ECMS) was used to split the torque request between the engine and the electric motor. This control strategy was modified with TCF to penalize the engine torque change rate. The results of the simulation show that due to less transient operation of the engine, the fuel consumption was reduced from 923 g to 918 g under the US06 driving cycle. The fuel economy of the model has been simulated for UDDS and HW drive cycles too, and fuel consumption improved by 4.4 g and 3.2 g, respectively. It has been verified that by increasing the battery capacity twice (14s24p), the limitations imposed by the battery capacity can be minimized and the fuel usage can be reduced by 9 g in the UDDS cycle

    Adaptive Model Predictive Control Including Battery Thermal Limitations for Fuel Consumption Reduction in P2 Hybrid Electric Vehicles

    Get PDF
    The primary objective of a hybrid electric vehicle (HEV) is to optimize the energy consumption of the automotive powertrain. This optimization has to be applied while respecting the operating conditions of the battery. Otherwise, there is a risk of compromising the battery life and thermal runaway that may result from excessive power transfer across the battery. Such considerations are critical if factoring in the low battery capacity and the passive battery cooling technology that is commonly associated with HEVs. The literature has proposed many solutions to HEV energy optimization. However, only a few of the solutions have addressed this optimization in the presence of thermal constraints. In this paper, a strategy for energy optimization in the presence of thermal constraints is developed for P2 HEVs based on battery sizing and the application of model predictive control (MPC) strategy. To analyse this approach, an electro-thermal battery pack model is integrated with an off-axis P2 HEV powertrain. The battery pack is properly sized to prevent thermal runaway while improving the energy consumption. The power splitting, thermal enhancement and energy optimization of the complex and nonlinear system are handled in this work with an adaptive MPC operated within a moving finite prediction horizon. The simulation results of the HEV SUV demonstrate that, by applying thermal constraints, energy consumption for a 0.9 kWh battery capacity can be reduced by 11.3% relative to the conventional vehicle. This corresponds to about a 1.5% energy increase when there is no thermal constraint. However, by increasing the battery capacity to 1.5 kWh (14s10p), it is possible to reduce the energy consumption by 15.7%. Additional benefits associated with the predictive capability of MPC are reported in terms of energy minimization and thermal improvement

    Development of Energy management system for Hybrid Electric Vehicles

    No full text
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Adaptive Model Predictive Control Including Battery Thermal Limitations for Fuel Consumption Reduction in P2 Hybrid Electric Vehicles

    No full text
    The primary objective of a hybrid electric vehicle (HEV) is to optimize the energy consumption of the automotive powertrain. This optimization has to be applied while respecting the operating conditions of the battery. Otherwise, there is a risk of compromising the battery life and thermal runaway that may result from excessive power transfer across the battery. Such considerations are critical if factoring in the low battery capacity and the passive battery cooling technology that is commonly associated with HEVs. The literature has proposed many solutions to HEV energy optimization. However, only a few of the solutions have addressed this optimization in the presence of thermal constraints. In this paper, a strategy for energy optimization in the presence of thermal constraints is developed for P2 HEVs based on battery sizing and the application of model predictive control (MPC) strategy. To analyse this approach, an electro-thermal battery pack model is integrated with an off-axis P2 HEV powertrain. The battery pack is properly sized to prevent thermal runaway while improving the energy consumption. The power splitting, thermal enhancement and energy optimization of the complex and nonlinear system are handled in this work with an adaptive MPC operated within a moving finite prediction horizon. The simulation results of the HEV SUV demonstrate that, by applying thermal constraints, energy consumption for a 0.9 kWh battery capacity can be reduced by 11.3% relative to the conventional vehicle. This corresponds to about a 1.5% energy increase when there is no thermal constraint. However, by increasing the battery capacity to 1.5 kWh (14s10p), it is possible to reduce the energy consumption by 15.7%. Additional benefits associated with the predictive capability of MPC are reported in terms of energy minimization and thermal improvement
    corecore